Confusion Matrix
Actual \ Predicted |
Positive |
Negative |
Positive |
True Positive |
False Negative |
Negative |
False Positive |
True Negative |
Derivations
Precision=ActionRecordsTP=TP+FPTP
- True Positive Rate(TPR), Sensitivity, Recall, HitRate,
TPR=Sensitivity=Recall=HitRate=AllPosTP=TP+FNTP
Specificity=AllNegTN=TN+FPTN
FPR=1−Specificity=AllNegFP=TN+FPFP
ActionRate=AllRecordsActionRecords=AllRecordsTP+FP
F1=2⋅Precision+RecallPrecision⋅Recall
Illustration
TPR=TP+FNTP
FPR=TN+FPFP
Precision=TP+FPTP
Recall=TP+FP+TN+FNTP+FP
Curves
Receiver Operating Characteristic (ROC)
One point in ROC space is superior to another if it is to the northwest of the first
- x-Axis: FPR
- y-Axis: TPR(CatchRate)
Precision-Recall (PR)
- x-Axis: Recall(HitRate)
- y-Axis: Precision
Lift
- x-Axis: ActionRate(% Total)
- y-Axis: Lift
Random: (AllPositive / Total) _ Action = (TP + FN) / (TP + FP + TN + FN) _ (TP + FP)
UseModel: TP
Lift = UseModel / Random = TP / ((TP + FN) / (TP + FP + TN + FN) * (TP + FP))
Gain
- x-Axis: ActionRate(% Total)
- y-Axis: HitRate(% Positive)